

Coil Data: THH Series

COILS

Titus offers hot water, chilled water, direct expansion (DX) coils for specific application with all THH Series Fan Coil Units. Strict on-site

Standard Features

- » Cooling 3, 4 or 6 row chilled water or DX
- » Heating 1, 2, 3 or 4 row hot water
- » 8 total rows of cooling and heating coils maximum
- » 1/2" 0.D. seamless copper tubes
- » 0.016" tube wall thickness
- » High efficiency aluminum fin surface for optimizing heat transfer, pressure drop and carryover
- » Left or right hand connections
- » Manual air vents

Titus offers fan coil rating and selection program, TEAMS for complete unit, coil and sound selection. See your representative for more information.

NOMINAL COIL CONNECTION SIZES

inspection before, during, and after installation guarantees the highest quality and performance available.

water source / fan coils

Optional Features

- » Automatic air vents
- » Stainless steel coil casings
- » DX coils are heat pump compatible

	Coil Type										
Unit Size			Steam								
	1 Row	2 Row	3 Row	4 Row	6 Row	1 Row	2 Row				
06	5/8 [16]	5/8 [16]	⁷ /8 [22]	⁷ /8 [22]	⁷ /8 [22]	5/8 [16]	⁷ /8 [22]				
08	5/8 [16]	5/8 [16]	⁷ /8 [22]	⁷ /8 [22]	⁷ /8 [22]	5/8 [16]	⁷ /8 [22]				
10	5/8 [16]	5/8 [16]	⁷ /8 [22]	⁷ /8 [22]	⁷ /8 [22]	5/8 [16]	⁷ /8 [22]				
12	5/8 [16]	⁷ /8 [22]	7/8 [22]	⁷ /8 [22]	1 ¹ /8 [29]	7/8 [22]	⁷ /8 [22]				
14	⁵ /8 [16]	⁷ /8 [22]	⁷ /8 [22]	1 ¹ /8 [29]	1 ¹ /8 [29]	⁷ /8 [22]	1 ¹ /8 [29]				
16	⁵ /8 [16]	⁷ /8 [22]	⁷ /8 [22]	1 ¹ /8 [29]	1 ¹ /8 [29]	⁷ /8 [22]	1 ¹ /8 [29]				
18	5/8 [16]	7/8 [22]	1 ¹ /8 [29]	1 ¹ /8 [29]	1 ¹ /8 [29]	7/8 [22]	1 ¹ /8 [29]				
20	5/8 [16]	7/8 [22]	1 ¹ /8 [29]	1 ¹ /8 [29]	1 ¹ /8 [29]	7/8 [22]	1 ¹ /8 [29]				

Notes:

- 1. All dimensional data is outside diameter (0.D.), measured in inches [millimeters]
- 2. See submittal drawings for connection locations
- 3. Connection sizes are for standard circuit coils. Consult factory for special applications.
- 4. Direct Expansion (DX) suction header connection sizes are either 5/8" [16mm] or 7/8" [22mm]. Refer to coil selection
- 5. DX coils include a fixed orifice distributor for multi-circuited coils. A DX coil with a single circuit requires no distributor. Thermal expansion valves (TXV's) are field supplied by others.

THH FACE AREA, FREE AREA AND FILTER SIZES

Unit Size	Coil Face Area	Nominal Filter Sizes	1" Throwaway Face Area	1" Pleated Gross Media Area	2" Pleated Gross Media Area
06	1.56 [0.15]	(1) 16 x 16 [406 x 406]	1.62 [.0.15]	4.0 [0.37]	5.4 [0.50]
08	2.08 [0.19]	(1) 16 x 20 [406 x 508]	2.04 [0.19]	4.8 [0.45]	6.8 [0.63]
10	2.50 [0.23]	(1) 16 x 25 [406 x 635]	2.57 [0.24]	6.0 [0.56]	8.5 [0.79]
12	3.02 [0.28]	(2) 16 x 16 [406 x 406]	3.23 [0.30]	8.0 [0.74]	10.4 [0.97]
14	3.54 [0.33]	(1) 16 x 16 & 16 x 20 (1) [406 x 406] & (1) [406 x 508]	3.65 [0.34]	8.0 [0.74]	12.2 [1.13]
16	4.06 [0.38]	(2) 16 x 20 [406 x 508]	4.08 [0.38]	9.6 [0.89]	13.4 [1.24]
18	4.58 [0.43]	(1) 16 x 20 & 16 x 25 (1) [406 x 508 & (1) [406 x 635]	4.61 [0.43]	10.8 [1.00]	14.3 [1.33]
20	5.00 [0.46]	(2) 16 x 25 [406 x 635]	5.14 [0.48]	12.0 [1.11]	17.0 [1.58]

Notes:

- 1. Face and free areas are in square feet [square meters]
- 2. Filter sizes are in inches [millimeters]

PERFORMANCE DATA

water source / fan coils

PHYSICAL DATA

AHRI STANDARD RATINGS

		C	oil		Cooling	Capacity	Wa	ter	
Model/Size	AHRI 440 Certified	Rows	FPI	(Dry Flow)	QT (BTUH)	QS (BTUH)	Flow Rate (GPM)	WPD (ft-wg)	Power Input (Watts)
THHC 06	*	4	10	674	20549	15710	4.1	5.81	247
THHC 08	*	4	10	872	24299	18090	4.9	7.29	375
THHC 10	*	4	10	1036	30600	22899	6.1	6.86	457
THHC 12	*	4	10	1361	42650	32159	8.5	6.34	494
THHC 14		4	10	1856	51080	40340	10.2	4.86	750
THHC 16		4	10	2053	60689	46490	12	7.15	914
THHC 18		4	10	2159	67819	50770	13.6	9.38	914
THHC 20		4	10	2292	73930	54779	14.7	11.65	914
THHP 06	*	4	10	669	20299	15560	4	5.64	247
THHP 08	*	4	10	950	25889	19389	5.2	8.03	375
THHP 10	*	4	10	1001	30180	22420	6.1	6.87	457
THHP 12	*	4	10	1437	44169	33509	8.8	6.68	494
THHP 14		4	10	1825	50779	39939	10.2	4.86	750
THHP 16		4	10	1852	56810	43029	11.3	6.4	914
THHP 18		4	10	1915	62750	46369	12.4	8.18	914
THHP 20		4	10	1999	68059	49580	13.6	10.06	914
THHE 06	*	4	10	594	18639	14149	3.7	4.98	247
THHE 08	*	4	10	740	21719	15909	4.4	6.27	375
THHE 10	*	4	10	845	26469	19479	5.2	5.49	457
THHE 12	*	4	10	1193	38970	29020	7.8	5.5	494
THHE 14		4	10	1491	43880	33979	8.7	3.69	750
THHE 16		4	10	1665	52950	39669	10.5	5.69	914
THHE 18		4	10	1762	60000	43779	12	7.84	914
THHE 20		4	10	1855	64690	46790	12.8	9.13	914

Notes:

1. Based on 80°F DB and 67°F WB EAT, 45°F EWT, 10°F temperature rise, high fan speed. Motor type is PSC and motor voltage is 115/1/60. Airflow under dry coil conditions. All models tested at 0.05" external static pressure.

2. Airflow rate CFM on sizes 14 through 20 exceed maximum ratings in AHRI 440 and are therefore not certified

water source / fan coils

PHYSICAL DATA

Redefine your comfort zone. TM | www.titus-hvac.com

HEATING CAPACITY

	Unit	Nom		1 Row			2 Row			3 Row		4 Row		
Unit Type	Size	CFM	QS (MBH)	GPM	WPD	QS (MBH)	GPM	WPD	QS (MBH)	GPM	WPD	QS (MBH)	GPM	WPD
	06	767	16.4	0.8	0.35	27.3	1.4	1.33	41.1	2.1	0.79	57.7	3.0	14.49
	08	994	22.8	1.2	0.72	43.3	2.2	1.46	54.0	2.8	0.86	73.9	3.8	8.54
	10	1145	27.4	1.4	1.15	53.4	2.7	0.32	65.8	3.4	1.42	88.7	4.5	13.73
тинс	12	1508	35.3	3.0	14.49	70.7	3.5	0.51	85.1	4.2	1.02	115.2	5.7	11.06
TITIC	14	2038	42.4	2.2	1.09	91.4	4.7	0.98	101.1	5.2	0.65	127.1	6.5	14.01
	16	2256	48.9	2.5	1.57	104.8	5.4	1.40	116.9	6.0	0.93	163.8	8.4	6.09
	18	2371	54.4	2.8	2.11	101.1	5.2	0.28	128.3	6.6	1.21	177.4	9.1	7.79
	20	2516	62.0	3.2	0.34	125.6	6.4	2.30	146.3	7.5	10.87	190.9	9.8	9.61
	06	733	15.8	0.8	0.33	25.9	1.3	1.20	41.4	2.1	0.81	57.4	2.9	14.30
	08	995	22.0	1.1	0.67	41.0	2.1	1.31	58.0	3.0	0.98	77.5	4.0	9.35
	10	1093	26.8	1.4	1.10	51.2	2.6	0.30	65.0	3.3	1.39	86.1	4.4	13.02
тиир	12	1525	34.8	1.8	2.05	69.7	3.6	0.53	88.5	4.5	1.18	118.1	6.1	12.48
INNE	14	1972	41.5	2.1	1.05	88.3	4.5	0.92	102.6	5.3	0.67	125.1	6.4	13.67
	16	2076	47.5	2.4	1.50	101.3	5.2	1.31	111.4	5.7	0.85	152.3	7.8	5.31
	18	2174	52.8	2.7	2.00	97.5	5.0	0.27	121.3	6.2	1.09	163.8	8.4	6.70
	20	2280	60.0	3.1	0.32	121.1	6.2	2.15	136.4	7.0	9.49	173.8	8.9	8.05
	06	681	15.5	0.8	0.33	25.3	1.3	1.16	38.8	2.0	0.72	53.7	2.8	12.63
	08	861	21.2	1.1	0.62	39.4	2.0	1.22	50.8	2.6	0.77	68.1	3.5	7.32
	10	989	25.8	1.3	1.03	48.8	2.5	0.27	60.0	3.1	1.19	79.4	4.1	11.17
тиис	12	1353	33.8	1.7	1.94	67.0	3.4	0.49	79.6	4.1	0.97	106.8	5.5	10.31
INNE	14	1628	38.5	2.0	0.91	81.1	4.2	0.79	89.7	4.6	0.52	109.9	5.6	10.66
	16	1863	45.1	2.3	1.36	94.9	4.9	1.16	104.6	5.4	0.76	144.6	7.4	4.81
	18	1986	50.3	2.6	1.83	91.1	4.7	0.23	115.8	6.0	1.00	157.8	8.1	6.27
	20	2086	57.0	2.9	0.30	113.9	5.9	1.92	130.4	6.7	8.70	168.3	8.6	7.56

Notes:

1. Based on 70°F DB EAT, 180°F EWT, 40°F temperature drop, high fan speed

2. THHP performance data varies from THHC and THHP units

water source / fan coils

PHYSICAL DATA

THH UNIT WEIGHT DATA

Comp	opont				U	nit Size			
Comp	Unent	06	08	10	12	14	16	18	20
THHC B	ase Unit	68 [31]	73 [33]	77 [35]	114 [52]	119 [54]	124 [56]	128 [58]	132 [60]
THHP B	ase Unit	87 [40]	95 [43]	101 [46]	141 [64]	150 [68]	157 [71]	164 [75]	170 [77]
THHP With	Mixing Box	119 [54]	132 [60]	144 [65]	189 [86]	204 [93]	217 [99]	229 [104]	246 [112]
THHE B	ase Unit	137 [62]	146 [66]	158 [72]	202 [92]	219 [99]	228 [103]	240 [109]	250 [113]
	1 Row - Dry	5 [2]	6 [3]	7 [3]	8 [4]	10 [5]	10 [5]	11 [5]	12 [5]
	1 Row - Wet	7 [3]	9 [4]	10 [5]	11 [5]	14 [6]	14 [6]	16 [7]	17 [8]
	2 Row - Dry	11 [5]	13 [6]	14 [6]	16 [7]	20 [9]	20 [9]	22 [10]	24 [11]
	2 Row - Wet	14 [6]	18 [8]	20 [9]	23 [10]	27 [12]	28 [13]	32 [15]	35 [16]
	3 Row - Dry	16 [7]	19 [9]	21 [10]	24 [11]	30 [13]	30 [13]	33 [15]	36 [16]
	3 Row - Wet	21 [10]	27 [12]	30 [13]	34 [15]	41 [19]	42 [19]	48 [22]	52 [24]
	4 Row - Dry	21 [10]	25 [12]	29 [13]	33 [15]	40 [18]	40 [18]	44 [20]	48 [22]
Coil	4 Row - Wet	27 [12]	35 [16]	41 [19]	46 [21]	54 [25]	56 [26]	64 [29]	69 [31]
Rows	5 Row - Dry	26 [12]	30 [13]	34 [15]	38 [17]	42 [19]	46 [21]	50 [23]	54 [25]
	5 Row - Wet	33 [15]	39 [18]	45 [21]	51 [23]	57 [26]	63 [29]	70 [32]	77 [35]
	6 Row - Dry	32 [15]	38 [17]	43 [20]	49 [23]	59 [27]	61 [28]	67 [30]	71 [32]
	6 Row - Wet	42 [19]	53 [24]	61 [28]	69 [31]	80 [36]	85 [39]	97 [44]	103 [47]
	7 Row - Dry	38 [17]	42 [19]	48 [22]	54 [25]	60 [28]	66 [30]	72 [33]	78 [35]
	7 Row - Wet	49 [23]	56 [26]	63 [29]	70 [32]	77 [35]	84 [38]	91 [42]	98 [45]
	8 Row - Dry	43 [20]	49 [23]	55 [26]	61 [28]	67 [30]	73 [33]	79 [36]	85 [39]
	8 Row - Wet	55 [26]	63 [29]	71 [32]	79 [36]	87 [40]	95 [43]	103 [47]	111 [50]

Note: Unit weight data is in pounds [kilograms]

water source / fan coils

Electric Heat

Titus offers electric heating coils for specific application with all Horizontal High Performance Fan Coil units. This allows the flexibility to provide an

Standard Features

www.titus-hvac.com

⊻⊥

Redefine your comfort zone.

- » ETL-Listed as an assembly for safety compliance
- » Single point power connection
- » Mounted in preheat position
- » Automatic reset primary and backup secondary thermal limits
- Internal wiring rated at 105°C »
- Integral electric heat assembly with removable element for easy service

Optional Features

» Silent solid state relays on heaters up to 18 amps

THH ELECTRIC HEAT SELECTION CHART (AMPS)

- » Door interlocking disconnect switch
- » Main fusing

unrivaled amount of electric heat options in one complete package.

Useful Formulas $kW^* = \underline{CFM \ x \ \Delta T \ x \ 1.085^{**}}$ 3413 $1\emptyset \text{ AMPs} = \underline{kW \ x \ 1000}$ Volts * 1kW = 3413 BTU/H ** Capacity at sea level Altitude Considerations: Reduce by 0.034 for each 1000 ft. of altitude above sea level.

Example: 5000 ft./1000 ft. = 5 $5 \times 0.034 = 0.17$ 1.085 - 0.17 = 0.915

Electrical Calculations Information

- 1. Contact your local Titus sales office
- Non-Fused Door Interlock Disconnect Switch shall be sized according 2. to MCA
- Fused Door Interlock Disconnect Switch and Main Fusing shall be sized 3. according to MOP

		MBH	6.8	85	10.2	119	13.7	17 1	20.5	23.9	27.3	30.7	34.1	410	47.8	Note	es:
	Unit	KW	2.0	2.5	3.0	35	4.0	50	6.0	7.0	8.0	9.0	10.0	12.0	14.0	1.	Shaded areas
	Size	Volts	2.0	2.0	0.0	0.0	1.0	0.0	AMPS	7.0	0.0	0.0	10.0	12.0	14.0		indicate kW and
		115	17.4	21.7	26.1	30.4	34.8										voltage options
	06	208	9.6	12.0	14.4	16.8	19.2									2	
		230	8.7	10.9	13.0	15.2	17.4									Ζ.	are single phase
		277	7.2	9.0	10.8	12.6	14.4										60 hertz
		115	17.4	21.7	26.1	30.4	34.8	43.5								3.	Heaters over
		208	9.6	12.0	14.4	16.8	19.2	24.0	28.8								48 AMPs are
	08	230	8.7	10.9	13.0	15.2	17.4	21.7	26.1								subdivided and
		277	7.2	9.0	10.8	12.6	14.4	18.1	21.7							1	fused per NEC
		115	17.4	21.7	26.1	30.4	34.8	43.5									
	10	208	9.6	12.0	14.4	16.8	19.2	24.0	28.8	33.7							
	10	230	8.7	10.9	13.0	15.2	17.4	21.7	26.1	30.4							
		277	7.2	9.0	10.8	12.6	14.4	18.1	21.7	25.3							
		115					34.8	43.5									
	12	208					19.2	24.0	28.8	33.7	38.5	43.3					
	IZ	230					17.4	21.7	26.1	30.4	34.8	39.1					
		277					14.4	18.1	21.7	25.3	28.9	32.5					
		115					34.8	43.5									
	14	208					19.2	24.0	28.8	33.7	38.5	43.3	48.1				
	14	230					17.4	21.7	26.1	30.4	34.8	39.1	43.5				
		277					14.4	18.1	21.7	25.3	28.9	32.5	36.1				
		115					34.8	43.5									
	16	208					19.2	24.0	28.8	33.7	38.5	43.3	48.1	57.7			
	10	230					17.4	21.7	26.1	30.4	34.8	39.1	43.5	52.2			
		277					14.4	18.1	21.7	25.3	28.9	32.5	36.1	43.3			
		115					34.8	43.5									
	18	208					19.2	24.0	28.8	33.7	38.5	43.3	48.1	57.7			
	10	230					17.4	21.7	26.1	30.4	34.8	39.1	43.5	52.2			
		277					14.4	18.1	21.7	25.3	28.9	32.5	36.1	43.3			
		115					34.8	43.5								1	
	20	208					19.2	24.0	28.8	33.7	38.5	43.3	48.1	57.7	67.3	1	
	20	230					17.4	21.7	26.1	30.4	34.8	39.1	43.5	52.2	60.9	1	
		277					14.4	18.1	21.7	25.3	28.9	32.5	36.1	43.3	50.5	1	

water source / fan coils

Fan Curves / PSC Motor

GENERAL FAN NOTES, PSC MOTORS

- Fan curves depict actual performance of each motor tap without any additional fan balance adjustment. Actual capacities which fall below each curve can be obtained by adding an adjustment device. Units should not be run prior to installation of downstream ductwork; otherwise, damage to the motor may result.
- 2. Titus Fan Coil Units are equipped with permanent split-capacitor (PSC) motors with three separate taps (High, Medium and Low which provide variable horsepower outputs. Most often, size selections are conservative and actual CFM requirements and/ or external static pressure requirements are lower than those specified. In this case, the unit fan motor can be run at low or medium tap, substantially reducing the operating cost of the unit.

SIZE 06

- 3. All fan curves are for 115/1/60 motors and include pressure losses for cabinet, electric heater, and 3 or 4 row coil. Plenum units include a clean 1" throwaway filter. For other coil configurations, adjust performance curves based on pressure losses for the coils as selected with the Titus TEAMS Coil Selection Program.
- 4. See page 92 for fan motor electrical data
- 5. For additional high static pressure applications and rating points, contact Titus

1200 1300 1400

- 3 ROW COIL 4 ROW COIL

FAN CURVES / PSC MOTOR

Redefine your comfort zone. TM | www.titus-hvac.com

V

PERFORMANCE DATA

FAN CURVES / PSC MOTOR

V

FAN CURVES / PSC MOTOR

water source / fan coils

ECM™ Fan Motor Option

Note: Contact Titus regarding EC motor data before project submission

THE ENERGY EFFICIENT SOLUTION

Titus offers an alternative to the PSC motor that significantly increases the operating efficiency of fan coil units. This motor is frequently referred to as an ECM (electronically commutated motor). It is a brushless DC (BLDC) motor utilizing a permanent magnet rotor. The motor has been in production for years and is commonly used in residential HVAC units. Fan speed control is accomplished through a microprocessor based variable speed controller (inverter) integral to the motor. The motor provides peak efficiency ratings between 70 & 80% for most applications.

ECM FEATURES AND BENEFITS

Ultra-High Motor & Controller Energy Efficiency DC motors are significantly more efficient than AC motors. Due to the permanent magnet, DC design, the ECM maintains approximately 75% efficiency at all speeds.

Pressure Independent Fan Volume

The integral microprocessor based controller includes a feature that provides sensorless (no external feedback) constant airflow operation by automatically adjusting the speed and torque in response to system pressure changes. This breakthrough will no doubt have far reaching benefits and endless applications. For starters, the fan volume supplied to the space will not significantly change as a filter becomes loaded. The air balance process will become simpler and more accurate since the fan volume will not need to be re-adjusted after the diffuser balance is accomplished.

Factory Calibrated Fan Volume

Due to the pressure independent feature, the fan capacity is calibrated at the factory at the nominal airflow rate. Within the published flow rate and external pressure limits, the fan motor will automatically adjust to account for the varying static pressure requirements associated with different unit configurations and downstream duct configurations. This feature should not preclude the final field air balance verification process during the commissioning stage of a project. An electronic (PWM) speed control device is provided to allow field changes of the fan capacity as the need arises. Fan volume can be field calibrated in two fashions. First, a potentiometer is provided allowing manual adjustment using an instrument type screwdriver. In addition, the fan volume can be calibrated through the BMS using an analog output (2 to 10VDC typical) to the speed controller. A fan volume verses DC volts calibration chart is provided.

Designer / Owner Flexibility

The ECM incorporates ball bearings in lieu of sleeve bearings typically utilized with an induction motor. Unlike a sleeve bearing motor, the ECM does not have a minimum RPM requirement for bearing lubrication.

This allows it to operate over a much wider speed range. A reduced spare parts inventory is another plus.

Custom Applications — Programmable Fan Operation

Boundless control opportunities arise due to the controllability of a DC motor combined with an integral microprocessor. Various input signals can direct the motor to behave in an applicationspecific mode. For instance, multiple discrete fan capacities can be achieved. In addition, the fan speed can be varied in response to the space temperature load. The fan is also programmed for a soft start. The motor starts at a low speed and slowly TEAMSs up to the required speed.

Extended Motor Life

The high motor efficiency provides a significantly reduced operating temperature compared to an induction motor. The lower temperature increases the longevity of all electrical components and therefore the life of the motor. The ball bearings do not require lubrication and do not adversely impact the motor life. Most fan coil applications will provide a PSC motor life between 60,000 and 100,000 hours. Expected ECM motor life will be considerably longer than a PSC motor, due to the reduced operating temperature and ball bearing components.

Application

Most variable speed electronic devices, including the ECM operate with a rectified and filtered AC power. As a result of the power conditioning, the input current draw is not sinusoidal; rather, the current is drawn in pulses at the peaks of the AC voltage. This pulsating current includes high frequency components called harmonics. Harmonic currents circulate on the delta side of a Delta-Wye distribution transformer. On the Wye side of the transformer, these harmonic currents are additive on the neutral conductor. A transformer used in this type of application must be sized to carry the output KVA that will include the KVA due to circulating currents.

Careful design must be provided when connecting single-phase products to three-phase systems to avoid potential problems such as overheating of neutral wiring conductors, connectors, and transformers. In addition, design consideration must be provided to address the degradation of power quality by the creation of wave shape distortion. In summary, proper consideration must be given to the power distribution transformer selection and ground neutral conductor design to accommodate the 3-phase neutral AMPs shown in the adjacent table. Specific guidelines are available from the factory.

water source / fan coils

Fan Curves / ECM™ Motor

Note: Contact Titus regarding EC motor data before project submission

GENERAL FAN NOTES, ECM MOTORS

- 1. Fan curves depict actual performance at the maximum speed of the ECM motor. Depending upon external static pressure, flow rates are achievable anywhere within the curve boundary by adjusting the motor speed through the electronic interface control board.
- Airflow rates will be constant for varying degrees of external static pressure caused by filter loading or other duct system variables once the electronic interface control board is set to desired flow rate
- Fan curves compensate for the pressure losses of the unit cabinet, coil rows, and a loaded throwaway filter For job specific fan curves please run the Titus TEAMS Coil Selection Program.
- 4. ECM motors operate using a rectified AC power source that is converted to a non-sinusoidal DC power wave form. Harmonic distortion may occur and circulate on the power distribution system. Circulating harmonic currents are potentially additive on the neutral conductors of 3-phase, 4-wire Wye distribution systems. Neutral conductors must be engineered to account for the additional current (amperes) encountered.
- 5. See page 92 for ECM motor electrical data

THHP Size 06 with 1/3 HP ECM Motor

THHP Size 10 with 1/3 HP ECM Motor

1000

THHP Size 12 with 1/3 HP ECM Motor

PERFORMANCE DATA

FAN CURVES / ECM MOTOR

water source / fan coils

Note: Contact Titus regarding EC motor data before project submission

THHP Size 18 & 20 with (2) 1/3 HP ECM Motor

ECM™ AIRFLOW

Unit Sizo	Factory	CFM I	Range
Unit Size	Set CFM	Min.	Max.
06	600	200	700
08	800	300	900
10	1000	300	1000
12	1200	400	1500
14	1400	600	1800
16	1600	600	1900
18	1800	600	2000
20	2000	600	2000

water source / fan coils

Motor and Fan Data

Note: Contact Titus regarding EC motor data before project submission

MOTOR AND FAN DATA

		Moto	or HP		AM	Ps @12	0/1/60	AMPs	@208-2	230/1/60	AMPs @277/1/60		
		(Qua	ality)	# Of			ECM			ECM			ECM
Unit Size	Fan Speed	PSC	ECM	Fan	PSC	FLA	3-Phase Neutral Current	PSC	FLA	3-Phase Neutral Current	PSC	FLA	3-Phase Neutral Current
	High	(1) ¹ /6			2.6			1.1			0.9		
06	Medium	(1) ¹ /8	(1) ¹ /3	1	2.1	5.0	8.7	0.9	2.8	4.8	0.8	2.6	4.5
	Low	(1) ¹ /10			1.8			0.6			0.7		
	High	(1) 1/4			3.8			1.6			1.3		
08	Medium	(1) ¹ /6	(1) ¹ /3	1	3.3	5.0	8.7	1.0	2.8	4.8	0.8	2.6	4.5
	Low	(1) ¹ /8			2.6			0.8			0.7		
	High	(1) 1/4			4.9			2.2			1.9		
10	Medium	(1) ¹ /5	(1) ¹ /3	1	4.1	5.0	8.7	1.5	2.8	4.8	1.2	2.6	4.5
	Low	(1) ¹ /6			3.2			1.1			0.8		
	High	(2) ¹ / ₆	(2) ¹ / ₃		5.2			2.2			1.8		
12	Medium	(2) ¹ /8		2	4.2	10.0	17.3	1.8	5.6	9.7	1.6	5.2	9.0
	Low	(2) ¹ /10			3.6			1.2			1.4		
	High	(2) 1/4	ļ		7.6		17.3	3.2	5.6	9.7	2.6		
14	Medium	(2) ¹ / ₆	(2) ¹ / ₃	2	6.6	10.0		2.0			1.6	5.2	9.0
	Low	(2) ¹ /8			5.2			1.6			1.4		
	High	(2) 1/4			9.8			4.4			3.8		
16	Medium	(2) ¹ /5	(2) ¹ / ₃	2	8.2	10.0	17.3	3.0	5.6	9.7	2.4	5.2	9.0
	Low	(2) ¹ / ₆			6.4			2.2			1.6		
	High	(2) 1/4			9.8			4.4			3.8		
18	Medium	(2) ¹ /5	(2) ¹ / ₃	2	8.2	10.0	17.3	3.0	5.6	9.7	2.4	5.2	9.0
	Low	(2) ¹ / ₆			6.4			2.2			1.6		
	High	(2) 1/4			9.8			4.4			3.8		
20	Medium	(2) ¹ / ₅	(2) ¹ / ₃	2	8.2	10.0 17.3	3.0	5.6	9.7	2.4	5.2	9.0	
	Low	(2) ¹ / ₆			6.4			2.2			1.6		

Notes:

1. Motor electrical data is nameplate data. Actual data will vary with application.

2. Motors nameplated for 208-230/1/60. Data is at 230 volts.

3. ECM motors operated on 208/1/60 power result in reduced airflow

SOUND DATA

Unit	Motor	Motor	UNIT	UNIT							
Size	Speed	RPM	SCFM (ECM)	SCFM (PSC)	2	3	4	5	6	7	8
	High	1161	768	722	69	67	65	65	61	63	55
06	Medium	965	589	622	66	62	62	59	57	54	47
	Low	678	403	502	58	53	55	50	46	44	33
	High	1118	887	1030	72	69	68	67	65	65	56
08	Medium	924	710	948	67	63	63	61	60	57	48
	Low	699	495	795	61	57	58	54	51	47	38
	High	1118	999	1074	73	70	69	69	67	65	58
10	Medium	911	791	988	68	64	65	63	62	57	48
	Low	689	563	785	62	60	60	56	54	49	39
	High	1142	1552	1543	74	73	70	71	67	67	60
12	Medium	920	1185	1275	69	67	65	64	62	59	50
	Low	708	862	1001	64	61	61	57	55	52	41
	High	1109	1832	1978	74	72	70	71	67	66	58
14	Medium	896	1458	1847	70	68	65	65	63	60	51
	Low	677	1044	1565	64	60	60	58	55	51	40
	High	1120	2026	2000	75	73	71	70	68	69	58
16	Medium	906	1606	1851	69	66	65	66	63	59	49
	Low	680	1145	1556	64	61	59	58	54	51	40
	High	1112	2057	2058	74	71	69	71	68	66	58
18	Medium	875	1608	1878	68	64	64	64	62	57	48
	Low	669	1168	1538	63	61	59	57	54	50	39
	High	1111	2099	2145	74	72	69	71	67	66	58
20	Medium	886	1647	1935	70	67	64	65	63	60	50
	Low	660	1167	1545	64	59	59	58	53	50	39