

Table of Contents

com	VAV DIFFUSER PRODUCTS	
Redefine your comfort zone. TM www.titus-hvac.com	VAV Diffusers Products	L3
tus-k		
ww.ti		
$\stackrel{\textstyle{\wedge}}{=}$	OVERVIEW	
е. ™	Design Features	L4
t zon		
mfor		
ır coı	APPLICATION GUIDELINES	
e yor	Application Guidelines	L5
efin		
Red		
	VAV DIFFUSERS	
	Thermal - T ₃ SQ-4	
	Dimensions	
	Dimensions	L10
	Accessories Non-VAV - T₃SO-0	
	Dimensions	L13
	Border Types Performance Data	
	1 GHOTHURGO DUID.	
	SOLAR VAV DIFFUSER	
	Helios Dimensions	
	Overview	
	Performance Data	L20
	ICONS	

TITUS Redefine your comfort zone, TM

VAV Diffuser Products

PAGES: L4-L16

T₂SQ-4

THERMAL VAV DIFFUSERS

Configurations

- T_3SQ-4 heating/cooling Features
- · Thermally powered VAV control
- · Center induction
- · Minimum airflow adjustment
- Enhanced pattern controllers for easy adjustment

T₂SQ-2

DIGITAL VAV DIFFUSERS

Configurations

- T_3SQ-2 heating/cooling Features
- DDC stand-alone VAV control
- · DDC BACnet VAV control
- DDC LonWorks VAV control
- · Optional inlet heater

T₃SQ-0

NON-VAV DIFFUSERS

Configurations

vav diffusers

- T_3SQ-0 non-VAV supply/return Features
- Designed to match the T₃SQ-4 thermal VAV diffusers

HELIOS

SOLAR VAV DIGITAL DIFFUSER

- Utilizes EnOcean's wireless technology
- · Uses ambient light energy for self-powering capability
- · Requires no building power
- Installation is simple and easy
- · Requires no complicated cabling or wiring
- 3 week power storage capability

Overview

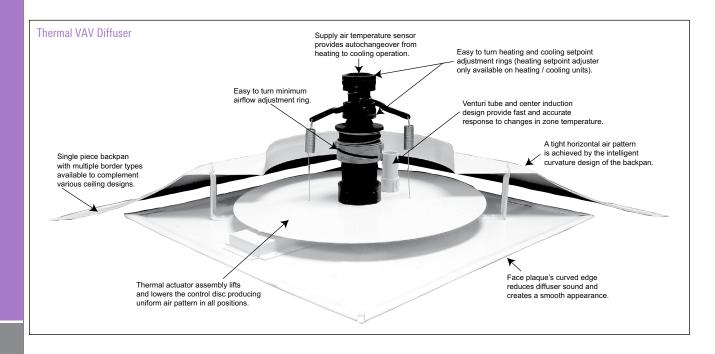
DESIGN FEATURES

PERSONALIZED VAV SYSTEMS

Titus brings both accuracy and flexibility to the variable air volume (VAV) market with T₃SQ VAV diffusers. The T₃SQ combines the functions of a VAV terminal and a high performance diffuser in one. The T₃SQ modulates the air volume delivered to a zone to accurately control cooling and heating conditions. The unique variable geometry design results in maximum air distribution effectiveness at any airflow for superior comfort conditions.

T₃SQ adds application flexibility by being able to operate stand-alone with thermal or digital controls.

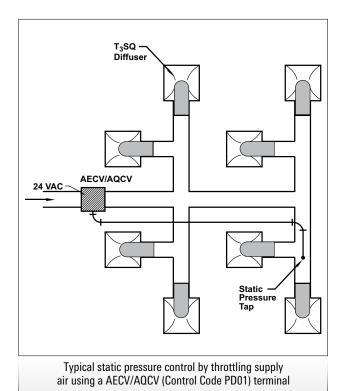
In addition to a superior performance VAV unit, the T_3SQ is solidly constructed with 18-gauge steel. Available in many frame styles, the T_3SQ can be installed in almost any ceiling as easily as a standard diffuser. The architecturally pleasing design coordinates with any office environment.


For applications that require system simplicity, proven technology and superior comfort, specify the Titus T_nSQ series of VAV diffusers.

- Variable geometry diffuser design maintains jet velocity at all flow rates, varying air flow pattern for optimal performance
- Separate cooling and heating setpoints on thermal T₂SQ
- Supply air temperature provides automatic cooling/heating changeover on configurations -4 and -2
- T₃SQ-2, digital, can control up to 14 secondary diffusers
- Optional electric inlet heater for applications requiring supplemental heat (T₂SQ-2 only)
- Provides accurate, personal environmental temperature control to improve productivity in the office environment

Installation and relocation are made easy

- Superior air distribution performance provides greater entrainment, higher Air Diffusion Performance Index (ADPI) and better ventilation effectiveness for Indoor Air Quality (IAQ)
- Lower cost per zone of control than typical VAV terminal with separate diffusers
- Renovate existing offices or add zones in problem areas to solve individual comfort problems
- Constant volume systems can easily become multi-zoned VAV systems for "big building comfort" on a small building budget
- Easy and inexpensive to relocate zones, ideal for use where office space may be reconfigured periodically
- · Easy to install and operate
- Unique center induction on thermal T₃SQ-4 ensures accurate readings even at low flows


APPLICATION GUIDELINES

CONSTANT VOLUME SYSTEM APPLICATION OPTION

The Titus T_3SQ system is ideal for use with a constant volume system. The T_3SQ gives all the advantages of a VAV system at low pressure conditions and reduced installation cost. The T_3SQ is a low pressure, pressure dependent, variable air volume (VAV) system. The T_3SQ is designed to operate around 0.15"- 0.20" inlet pressure. This system provides zoned comfort, which is not always possible with a typical constant volume system.

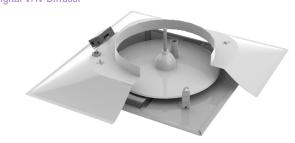
 It is recommended that a static pressure controller such as the Titus AECV/AQCV (Control Codes PR01, PD01) be installed into a constant volume system when more than 30 percent of the system airflow is

- put under the control of T_3SQ diffusers. This minimizes the possibility of delivering excess air when a portion of the T_3SQ are operating at part load conditions.
- 2. When an entire constant volume system uses T_3SQ zone control, a AECV/AQCV box should be implemented. The Titus AECV/AQCV pressure control terminal should be sized for 80 percent of the total supply flow, less the airflow of the smallest zone.
- 3. Care must be taken when sizing and installing a AECV/AQCV. The unit should be installed as far downstream from the fan as is practical to maximize supply and return air mixing. This reduces the risk of the unit cycling on high or low.

VARIABLE AIR VOLUME SYSTEM APPLICATION OPTION

The Titus T₃SQ system is ideal for use in buildings where the advantages of zoned variable air volume (VAV) systems normally cannot be used due to budget issues or plenum space constraints.

Special care should be taken when determining the static pressure of a VAV system with $T_3 SQ$ units.

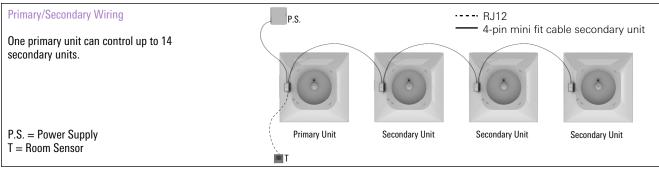


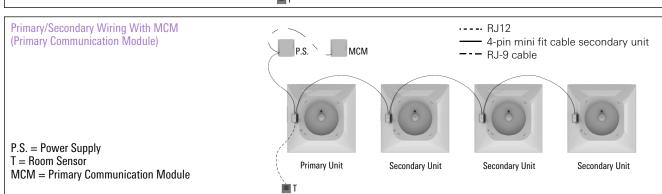
Typical static pressure control by bypassing supply air using a AECV/AQCV (Control Code PR01) terminal

APPLICATION GUIDELINES

Digital VAV Diffuser

PRIMARY / SECONDARY


 $\rm T_3SO-2$ diffusers are all shipped as secondary units. Determination of primary units is made through plug and play cable connections to the thermostat. The units connected to the thermostat are the primary units. All units daisy chained from the primary are secondarys. Secondary diffusers must be connected to a primary diffuser in order to operate. One power module is required for every 15 diffusers with or without optional electric reheat. Power module requires 120, 208, 240, 277 VAC line voltage input.


The 4-pin mini-fit cables provide 24VAC power and communication between diffusers. This cable should be used between the power module and the first diffuser and also to connect a primary unit to a secondary unit

The 4-pin mini-fit cables provide 24VAC power and control signal between diffusers. This cable should be used between diffuser and primary controller/thermostat and between primary and secondary units.

The Primary Communications Module is a central data collection and distribution point for up to 60 VAV field diffusers. The device features four diffuser channel inputs, which can accommodate up to 15 diffusers each. This allows the users to interface with 60 diffusers per communication module through a building management system. The interface software also has a server application which allows all communication modules on site to be accessed through the building management system from the IP address of each module. Primary communication modules are available in the following communication protocols:

- Standard Primary Communication module (Stand-Alone)
- Primary Communications module with BACnet gateway (MS/TP) (TCP/IP)

VAV Diffusers

T3SQ-4

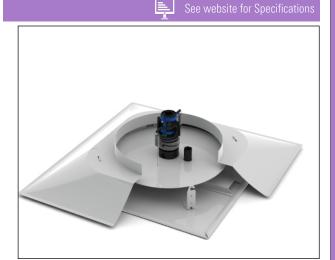
- The T₃SQ-4 is a thermal variable volume diffuser. The diffuser maintains space temperature by varying the volume of air delivered to the space. The amount of air delivered will depend on the Supply Air Temperature (SAT) (-4 only), the room temperature setpoint, and the room temperature.
- Available in heating/cooling (-4) configuration
- As the volume of air is decreased by the control disc, the velocity
 of air is increased thereby maintaining the longest throw and
 best entrainment ensuring superior air distribution at all damper
 positions
- The curvature of the backpan works with the formed edges of the face panel to deliver a tight horizontal air pattern without excessive noise or pressure drop over the full range of operation
- The T₃SO-4 uses a center induction plug to accurately measure the room temperature. This eliminates the need for a wall-mounted thermostat or sensor and provides the most accurate way of measuring the room air temperature.
- Adjustment of the room temperature setpoint is achieved by rotating the blue (cooling) only adjustment ring

T3SQ-4

MODEL:

T₂SQ-4 / Heating & Cooling

FINISH:

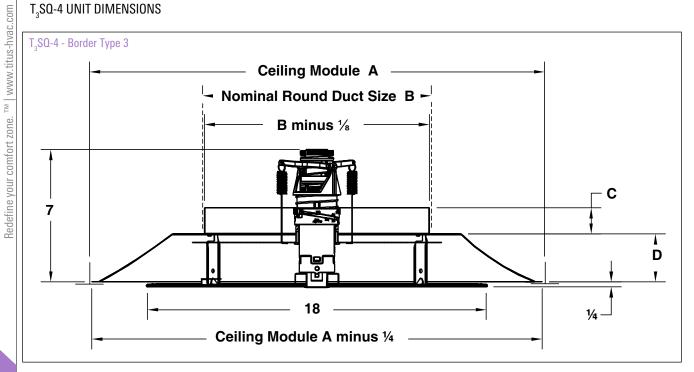

Standard Finish - #26 White

OVERVIEW

The T_3SO-4 works in both heating and cooling applications. The curvature of the backpan works with the formed edges of the face panel to deliver a tight horizontal air pattern without excessive noise or pressure drop over the full range of operation. As the volume of air is decreased by the control disc, the velocity of air is increased, thus maintaining the longest throw and best entrainment. This ensures superior performance at all damper positions.

ADDITIONAL FEATURES

- Adjustment of the green tab offset creates a temperature deadband for heating and cooling setpoints
- Adjustment of minimum airflow is achieved by rotating the grey minimum airflow adjustment ring
- The face panel and backpan are constructed from 18-gauge steel.
 The formed outer edge also assures a straight and level surface.


Cutaway view of the T₃SQ-4 diffuser

T3SQ-4

DIMENSIONS

T₃SQ-4 UNIT DIMENSIONS

Ceiling Module A	Nominal Round Duct Sizes B	С	D
	6	11//8	35//8
24	8	11/4	3¾
	10, 12	13//8	37//8

Ceiling Module A	Face Size	Nominal Round Duct Size	Border Type
24 x 24	24 x 24	6, 8, 10, 12	1, 2, 3, 4, NT

VAV Diffusers (continued)

T3SQ-2

- The T₃SO-2 is an electronic variable volume diffuser. The diffuser maintains space temperature by varying the volume of air delivered to the space. The amount of air delivered will depend on the Supply Air Temperature (SAT) (-4 only), the room temperature setpoint, and the room temperature.
- As the volume of air is decreased by the control disc, the velocity
 of air is increased thereby maintaining the longest throw and best
 entrainment. This ensures superior air distribution at all damper
 positions.
- The curvature of the backpan works with the formed edges of the face panel to deliver a tight horizontal air pattern without excessive noise or pressure drop over the full range of operation
- T₃SQ-2 primary diffusers are created by connecting the diffuser to a wall mounted controller/thermostat using the RJ-12 control cable
- T₃SQ-2 secondary diffusers are created by connecting the diffuser to a primary unit using the 4-pin mini-fit control cable
- Up to fifteen T₃S0-2 diffusers can be powered by a single power module using the 4-pin mini-fit power cable

T3SQ-2

energy solutions

MODEL:

T₂SQ-2 / Heating & Cooling

FINISH:

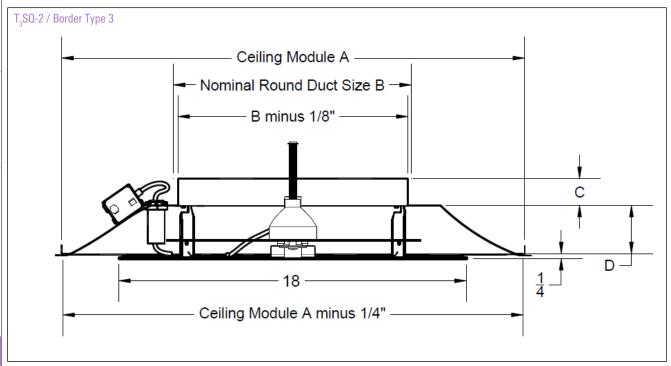
Standard Finish - #26 White

OVERVIEW

The Digital T₃SQ-2 is the most energy efficient VAV diffuser on the market. It requires 10 times less power than the competitor's model. The communication modules allow for interfacing with building management systems for all major communication protocols. With user friendly software to control and commission diffusers, the Digital T₃SQ -2 is the next level of VAV diffusers on the market.

ADDITIONAL FEATURES

- The position of the control disc is varied by a linear drive actuator mounted on the control disc
- The face panel and backpan are constructed from 18-gauge steel.
 The formed outer edge also assures a straight and level surface.


Exploded view of the T3SQ-2 digital diffuser

Redefine your comfort zone. TM | www.titus-hvac.com

DIMENSIONS

T₃SQ-2 UNIT DIMENSIONS

Ceiling Module A	Nominal Round Duct Sizes B	С	D
	6	11//8	35//8
24	8	11/4	3¾
	10, 12	13//8	37//8

Ceiling Module A	Face Size	Nominal Round Duct Size	Border Type
24 x 24	24 x 24	6, 8, 10, 12	1, 2, 3, 4, NT

Titus Redefine your comfort zone.

ACCESSORIES

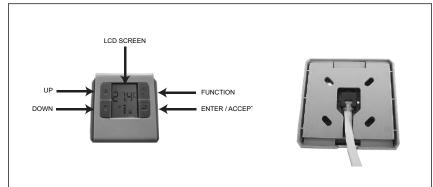
PRIMARY COMMUNICATION MODULE

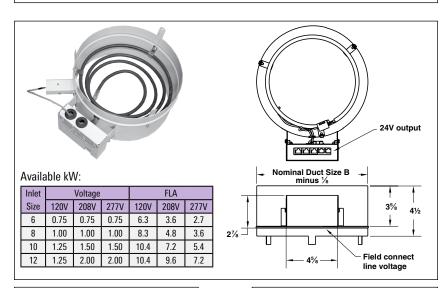
- Available with Standard (Titus) communication module, BACnet.
- MCM is the central data collection and distribution point for up to 60 VAV field diffusers per module
- Features four diffuser channel inputs which can accommodate up to 15 diffusers per channel, per communication module (MCM)
- Interface software is designed as a commissioning tool as well as for data monitoring, logging, and fault finding
- · Software is supplied with each shipment

- Each primary T3SQ-2 diffuser requires a controller / thermostat
- 24VAC RJ-12 control cable connection
- Room sensor with LCD display real time clock for night set-back & control disc position display
- Provides Setpoint Temperature adjustment & room temp display
- Interfaces with a USB module in order to interface with software for further functionality
- Dimensions are 3" x 3 1/4"

OPTIONAL INLET ELECTRIC HEATER

- · Installs into neck of diffuser
- 120V, 208V or 277V single phase input power (field connect)
- · Black heat element
- SCR modulating heater control
- Ships loose for field installation
- Integrated wiring interface box
- Automatic reset thermal cutout
- Manual reset secondary protection


CABLES (HEATER CONNECTION)


- Blue RJ-12 (8-pin straight through pinout) for control and power
- Modular connector that attaches the ribbon cable and RJ-12 to heater

RELIEF RINGS

- Used to bypass supply air into the ceiling plenum as the diffuser turns down
- Available for both digital and thermal configurations
- Effectively reduces inlet size by 2 inches

VAV Diffusers (continued)

Redefine your comfort zone. TM | www.titus-hvac.com

T₃SQ-0

- $\bullet~$ The T $_{\!_3}SQ\text{-}0$ is a non-VAV supply or return diffuser with a center induction cap designed to match the T $_{\!_3}SQ\text{-}4$ thermal VAV diffusers
- The curvature of the backpan works with the formed edges of the face panel to deliver a tight horizontal air pattern, without excessive noise or pressure drop over the full range of operation
- The T_3SO diffuser is designed to satisfy architectural, as well as engineering criteria. The strong, clean, unobtrusive lines harmonize with the ceiling, without sacrificing performance.
- The face panel and backpan are constructed from 18-gauge steel. The formed outer edge also assures a straight and level surface.

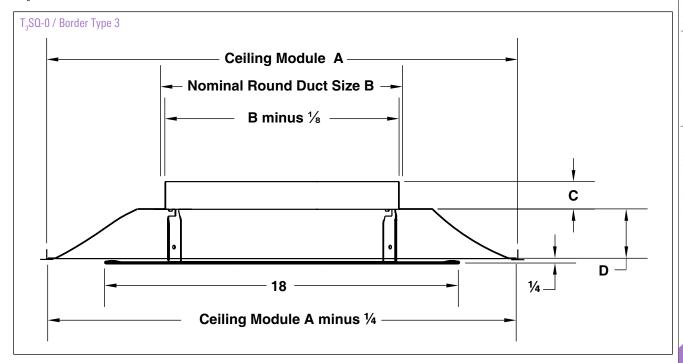
T3SQ-0

MODEL:

T₃SQ-0 / Heating & Cooling

FINISH:

Standard Finish - #26 White


OVERVIEW

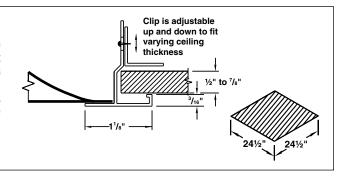
The T3SQ-0 is a non-VAV supply or return diffuser with a center induction cap designed to match the T3SQ-4 thermal VAV diffusers.

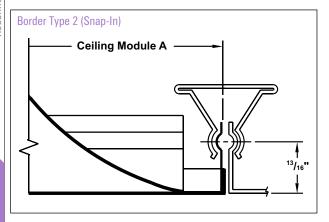
T₃SQ-0 UNIT DIMENSIONS

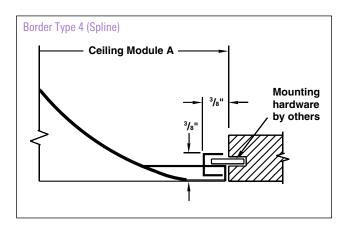
DIMENSIONS

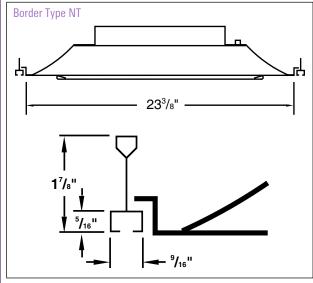
Ceiling Module A	Nominal Round Duct Sizes B	С	D
	6	11//8	35//8
24	8	11/4	33/4
	10, 12	13//8	37//8

A Face Size		Nominal Round Duct Size	Border Type	
24 x 24	24 x 24	6, 8, 10, 12	1, 2, 3, 4, NT	




VAV Diffusers (continued)


BORDER TYPES

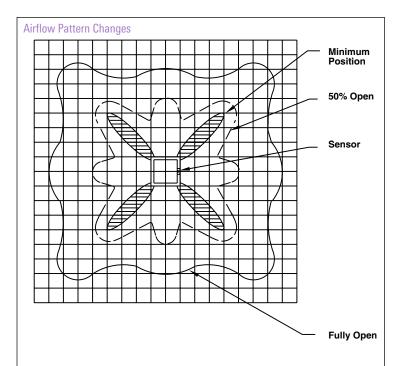

Border Type 1 Rapid Mount Frame (for surface mounting applications)

The $\rm T_3SO$ series of diffusers is not available with standard Border Type 1. For surface mounting applications, the TRM optional Rapid Mount Frame can be used. Using border option TRM, the $\rm T_3SO$ diffusers are shipped with Border Type 3 (lay-in). The TRM frame is shipped separately for field installation. Once the TRM is installed, the $\rm T_3SO$ diffuser simply lays into the frame. This option allows access into the ceiling after installation.

Face Plaque Installation

Installation is completed by lining up the hooks on the face plaque assembly with the corresponding slot

Easy three step hook installation for the face plaque


T₃SO MAXIMUM FLOW SELECTION

PERFORMANCE DATA

	Neck Velocity	400	500	600	700	800	900	1000
Inlet Size	Velocity Pressure	0.010	0.016	0.022	0.031	0.040	0.050	0.062
	Static pressure	0.016	0.024	0.037	0.048	0.064	0.082	0.100
	Total Pressure	0.016	0.040	0.059	0.079	0.104	0.132	0.162
6"	cfm	79	98	118	137	157	177	196
U	NC	5	10	14	17	20	23	25
	Throw, ft	1-2-3	1-2-4	2-3-5	2-3-6	2-3-7	3-4-7	3-4-8
	Static pressure	0.021	0.032	0.047	0.063	0.083	0.106	0.130
	Total Pressure	0.021	0.032	0.047	0.003	0.003	0.156	0.130
8"								
0	cfm	140	175	209	244	279	314	349
	NC .	8	13	17	20	23	25	28
	Throw, ft	2-3-5	2-3-7	2-4-8	3-5-9	3-5-10	4-6-10	4-7-11
	Static pressure	0.030	0.047	0.069	0.093	0.122	0.155	0.190
	Total Pressure	0.040	0.063	0.091	0.124	0.162	0.205	0.252
10"	cfm	218	273	327	382	436	491	545
	NC	14	19	23	26	29	31	34
	Throw, ft	3-4-8	4-5-10	4-6-11	5-8-12	6-9-13	6-10-14	7-10-14
	Static pressure	0.048	0.075	0.109	0.147	0.192	0.244	0.301
	Total Pressure	0.058	0.091	0.131	0.178	0.232	0.294	0.363
12"	cfm	314	393	471	550	628	707	785
	NC	24	29	33	36	39	41	44
	Throw, ft	4-6-11	5-8-12	6-9-13	7-10-14	8-11-15	9-11-16	10-12-17

AIR DISTRIBUTION AT VARIOUS DAMPER POSITIONS

The performance of the T₃SQ diffuser is related to supply static pressure and size. If the supply static pressure is held at a constant value and the VAV diffuser damper is throttled to a closed position, the airflow pattern is changed from a square pattern to a star pattern. The isovel in the adjacent illustration demonstrates this pattern change. With the reduction of cfm, throw does not decrease as in standard diffusers. As the damper closes the discharge velocity is slightly increased, minimizing throw reduction. With a fixed inlet pressure, the sound values have very small changes of intensity as the damper is modulated.

Note: The isovel changes as the diffuser damper modulates from open to close (or any combination between) causing variations to the airflow pattern

PERFORMANCE DATA

AHRI Directory of Certified Performance

AHF	AHRI Rating Data				Inlet Size	6" Inlet	8" Inlet	10" Inlet	12" Inlet
	3. Airflow, cfm					147	262	409	589
	4. Min. Operating Pressure, in H ₂ 0					0.091	0.108	0.142	0.204
	5. Max. Inlet Static Pressure @ 400 fpm Neck Velocity, in H ₂ 0					0.116	0.196	0.392	0.565
 	6. Rated with	Pressure Relief	, yes/no			n	n	n	n
l ev		, er city	tial		125	36	38	46	53
wer	ω	flow mpe /elo	reni ure,	^	250	37	40	48	56
Po	larg	I Air n da sck \	ım Diffe c Press in H ₂ 0	nenc	500	34	36	42	50
pun	Discharge Standard Airflow Fully open damper	darc opei n Ne	Minimum Differential Static Pressure, in H ₂ 0	requ	1000	30	34	39	44
s So		stan ully fpn	tpm 	Hz Octave Band Center Frequency	2000	21	29	32	36
ting		750 750 Mi	Μ		4000	+	19	23	28
Standard Ratings Sound Power Level, dB	Discharge Standard Airflow Throttled Damper	, r city	Max. Inlet Static Pressure, in H ₂ 0		125	+	44	46	50
darc		flow mpe /elo			250	36	52	54	55
Stan		x. Inlet Sta Pressure, in H ₂ 0	tave	500	40	57	58	60	
)isch	darc ttled n Ne	Inlet S ressure in H ₂ 0	Hz 0c	1000	34	51	55	58
		Stan Throi	Мах		2000	23	44	48	52
		S T 400			4000	+	37	42	47
Note: Sound Power levels below values shown in this table shall be listed as below significance. Use a plus sign (+) to indicate below significance.									
	Hz Octave Ban	d		125	250	500	1000	2000	4000
	Sound Power I	Level, dB		36	29	26	22	19	17

Performance data is presented for the T_3SQ diffuser with the internal VAV damper in full open position

Solar VAV Diffusers

Helios

- · Fully self-contained solar powered unit
- Digital precision with the narrow dead band between set points
- · Low install and maintenance costs
- · Wireless thermostatic control
- · Simple push button commissioning
- Up to 10 diffusers can be configured on single zone
- Scalable Plug & Play functionality- standalone unit easily converted to wireless thermostat
- Architectural OMNI platform for clean look
- Industry-exclusive solar and wireless technology

HELIOS

Redefine your comfort zone. ™ | www.titus-hvac.com

light-powered

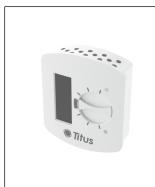
dual-function

retrofit

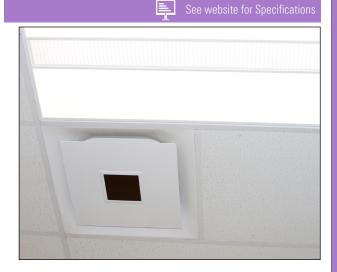
energy solution

MODEL:

Helios / Solar-Powered


FINISH:

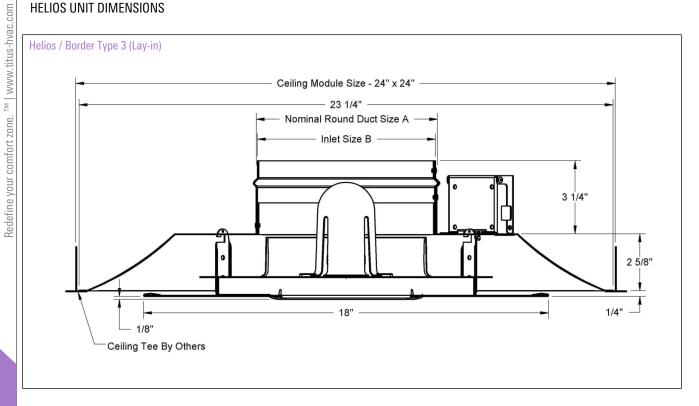
Standard Finish - #26 White


OVERVIEW

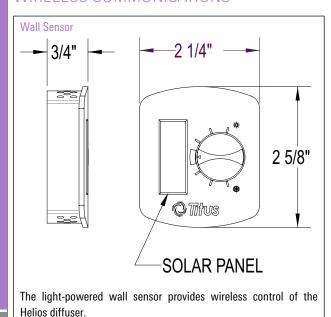
Helios is a brand new line of digital diffusers powered by ambient light. It automatically delivers just the right amount of warm or cool air using a unique digital logic system for more accurate temperate bands. Feel the difference in your comfort, see the difference in your energy bills. When it comes to VAV diffusers, it's time to see the light.

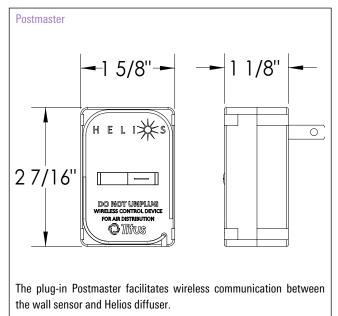
WIRELESS COMMUNICATIONS

Wall Sensor Postmaster


Helios VAV digital solar-powered diffuser installed in the ceiling of an office building

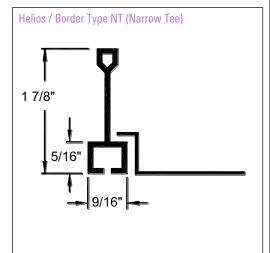
H E L I

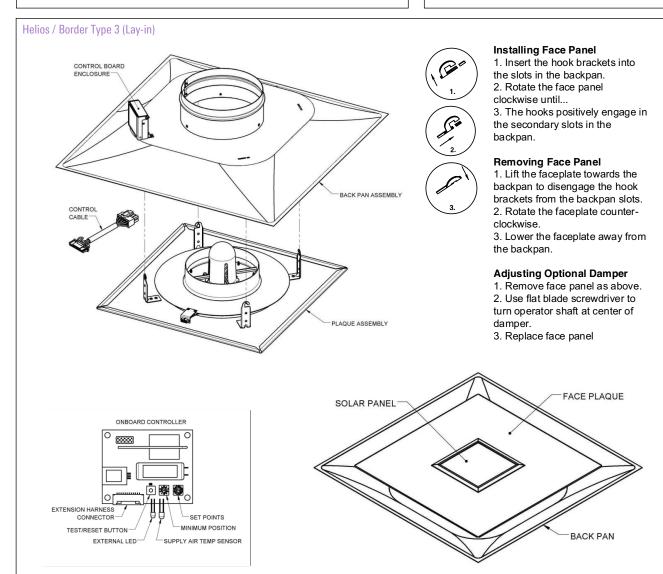

DIMENSIONS


HELIOS UNIT DIMENSIONS

Ceiling Module A	Nominal Round Duct Size	Border Type		
24 x 24	6. 8. 10. 12	3, NT		
300MM x 300MM	0, 8, 10, 12	3		

WIRELESS COMMUNICATIONS


H E L I


Overview vav diffusers

OTHER AVAILABLE BORDER TYPES

The Helios series of diffusers are not available with standard border type 1. For surface mounting applications, the TRM optional Rapid Mount frame can be used. Using border option TRM, the Helios series diffusers are shipped with border type 3 (lay-in). The TRM frame is shipped separate for field installation. Once the TRM is installed, the Helios diffuser simply lays into the frame. This option allows access into the ceiling after installation.

PERFORMANCE DATA

HELIOS MAXIMUM FLOW SELECTION

Inlet Size	Neck Velocity	400	500	600	700	800	900	1000
Illiet Size	Velocity Pressure	0.010	0.016	0.022	0.031	0.040	0.050	0.062
	Static pressure	0.022	0.034	0.049	0.066	0.086	0.11	0.134
	Total Pressure	0.032	0.50	0.071	0.097	0.126	0.16	0.196
6"	cfm	79	98	118	137	157	177	196
	NC	-	-	13	18	22	26	29
	Throw, ft	1-1-4	1-2-5	1-3-7	2-4-7	2-4-8	3-5-8	3-5-9
	Static pressure	0.024	0.038	0.054	0.074	0.097	0.122	0.151
	Total Pressure	0.034	0.054	0.076	0.105	0.137	0.172	0.213
8"	cfm	140	175	209	244	279	314	349
	NC	-	15	20	24	28	31	34
	Throw, ft	1-3-6	2-4-8	3-5-9	4-5-11	4-6-11	5-7-12	5-8-13
	Static pressure	0.038	0.059	0.085	0.116	0.152	0.192	0.237
	Total Pressure	0.048	0.075	0.107	0.147	0.192	0.242	0.299
10"	cfm	218	273	327	382	436	491	545
	NC	17	23	28	32	36	39	42
	Throw, ft	4-6-11	5-7-13	6-9-14	7-10-15	8-11-16	9-12-17	10-13-18
	Static pressure	0.062	0.097	0.14	0.191	0.249	0.315	0.389
	Total Pressure	0.072	0.113	0.162	0.222	0.289	0.365	0.451
12"	cfm	314	393	471	550	628	707	785
	NC	18	25	31	36	40	43	47
	Throw, ft	5-7-13	6-9-14	7-11-16	9-12-17	10-13-18	11-14-19	12-14-20

Notes:

- Throw values given are for terminal velocities of 150, 100 and 50 fpm, respectively at 20° F Cooling. See Engineering Guidelines section for additional information.
- Velocity pressures are calculated based on inlet duct velocities
- Noise Criteria (NC) is based on room sound attenuation of 10dB (per AHRI 885 Standard). NC values less than 15 are shown as "-".
- · Data was obtained by tests conducted in accordance with standard ANSI/ASHRAE 70

Redefine your comfort zone. $^{\mathsf{TM}}$ | www.titus-hvac.com

Notes

lcons vav diffusers

contributes toward energy savings by reducing operating costs of air distribution devices

energy solutions

energy-harvesting & savings feature of an HVAC device powered by ambient light

light-powered

for use in retrofitting older products into modern designs $\boldsymbol{\vartheta}$ systems

retrofit

supplies both heating and cooling from one air device

dual-function

